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Abstract. We study two-photon double ionization of helium in its ground state at sufficiently low laser
intensities so that three and more photon absorptions are negligible. In the regime where sequential ion-
ization dominates, the two-photon double ionization one-electron energy spectrum exhibits a well defined
double peak structure directly related to the electron-electron correlation in the ground state. We demon-
strate that when helium is exposed to subfemtosecond or attosecond pulses, both peaks move and their
displacement is a signature of the time needed by the He+ orbital to relax after the ejection of the first
electron. This result rests on the numerical solution of the corresponding non-relativistic time-dependent
Schrödinger equation.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) –
32.80.Dz Autoionization

1 Introduction

The direct exploration of the bound electron dynam-
ics in atoms or molecules requires XUV pulses as short
as a few hundreds of attoseconds (as). Over the past
decade, various schemes aimed at generating as-pulse
trains [1–6] and single as-pulses [7,8] have been stud-
ied. Among these schemes, the most promising one to-
wards the production of as-pulses is based on high order
harmonic generation with few-cycle Ti:S laser pulses in
noble gas [9,10]. The first convincing experimental evi-
dences [11,12] of the production of as-pulses have been
obtained recently. At present, substantial efforts are made
in two directions: (i) a complete characterization of an
as-pulse and (ii) an increase of the XUV fluence avail-
able from the high-harmonic sources. These efforts should
pave the route towards time-resolved spectroscopy in the
attosecond domain.

In this contribution, we consider the helium atom and
demonstrate that it is possible to probe with one XUV
as-pulse, the electron-electron correlation in its ground
state. We study the two-photon double ionization (DI)
(2γ, 2e) process from He(11S) at sufficiently low laser
intensities so that three and more photon absorptions
are negligible. As shown in a previous work [13] and
by contrast to one-photon double ionization, this pro-
cess is dominated by transition channels that require no
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interaction between the electrons. Furthermore, for pho-
ton energies ω larger than 2 a.u. and long pulse dura-
tions, the (2γ, 2e) process is mainly sequential while for
ω < 2 a.u. (39.5 eV < ~ω < 54.4 eV) it becomes direct.
For ω > 2 a.u., the one-electron energy spectrum exhibits
two peaks which are actually spaced by the correlation
energy Ec in the ground state. This correlation energy is
defined here by the difference between the “exact” ground
state energy EHe(11S) and the ground state energy E1s2

obtained within the independent model. Note that if both
electrons were completely independent (electron-electron
correlation neglected in the ground state), the one-electron
energy spectrum would exhibit only one peak. To the cor-
relation energy, we associate a correlation time defined
in a.u. by 1/Ec. The question that is addressed here is
the following: how is the one-electron energy spectrum
modified when the interaction time becomes of the or-
der of the correlation time for ω > 2 a.u.? We show that
together with an expected broadening of the two peaks,
these peaks move towards each other until we reach a sit-
uation in which both peaks merge: in that case, the inter-
action time is so short that it is impossible to distinguish
between the direct and the sequential process. The dis-
placement of the peaks is actually a direct signature of
the time the He+ orbital takes to relax after the ejection
of the first electron. These effects have been first discussed
in the context of (2γ, 2e) processes in the helium isoelec-
tronic series [14]. When the photon energy is high enough
so that autoionizing states may play a role, we show that
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the (2γ, 2e) process is still strongly dominated by the se-
quential process in agreement with the recent results of
Nikolopoulos et al. [15].

Our results for the one-electron energy spectrum are
obtained by solving numerically the (non-relativistic)
time-dependent Schrödinger equation (TDSE). We use a
spectral method of configuration interaction type. Pro-
ducts of L2 integrable functions are used to represent the
radial part of the total wavefunction. The L2 integrable
functions are either Coulomb Sturmian functions [16] or
B-splines [17]. Owing to the complexity of the calculations,
we systematically compare the results obtained with the
two types of basis functions. In the following, atomic units
are used throughout unless otherwise stated.

2 Theoretical approach

2.1 Atomic structure calculation

Let us first briefly describe our theoretical approach. A
given helium wavefunction Ψα of energy Eα is solution of
the following equation:

HΨα = EαΨα, (1)

where H is the non-relativistic Hamiltonian; it writes:

H = −1
2
∆1 − 1

2
∆2 − Z

r1
− Z

r2
+

1
|r1 − r2| · (2)

Z denotes the nucleus charge and r1 and r2 are the radial
coordinates of the two electrons. For a given total angu-
lar momentum L and its projection M , we expand the
solution of equation (1) as follows:

ΨL,M
α (r1, r2) =

∑
λ,l,ν,n

cλ,l,L,M
α,ν,n A

× Fλ,ν(r1)
r1

Fl,n(r2)
r2

ΛL,M
λ,l (Ω1, Ω2), (3)

where A is the antisymmetrisation operator and cλ,l,L,M
α,ν,n

the expansion coefficient. λ and l are the angular momenta
of the electrons and ΛL,M

λ,l a bipolar spherical harmonics
function of Ω1 and Ω2, the angular coordinates of both
electrons. The functions Fl,n are L2 integrable functions
which are either Coulomb Sturmian functions or B-splines.
For a given angular momentum l, the Coulomb Sturmian
functions Sk

l,n(r) are defined as follows:

Sk
l,n(r) = Nk

l,nrl+1L2l+1
n−l−1(2kr), (4)

where Nk
l,n is a normalization constant and L2l+1

n−l−1 a
Laguerre polynomial. The wavevector k plays the role of
a scaling factor and the index n varies between l + 1 and
N + l + 1 where N is the number of Coulomb Sturmian
functions for a given l. Note that these functions form a
complete and discrete basis and are solution of the radial
hydrogenic Sturm-Liouville eigenvalue problem [18]. The

B-spline functions Bk
n(r) of order k are piecewise polyno-

mials of degree k−1. The index n varies between 1 and Nb

where Nb is the number of B-splines. The Nb B-spline
functions are spanned, along the radial axis, in a “box”
defined from r = 0 to Rmax. The B-spline sequence is cho-
sen so that Bk

1 (0) = Bk
Nb

(Rmax) = 0 in order to fulfil the
correct boundary conditions within the box.

A direct diagonalization of equation (1) gives the
eigenenergies Eα as well as the expansion coeffi-
cients cλ,l,L,M

α,ν,n of the bound and continuum states. The au-
toionization width of the doubly excited states can be ob-
tained by means of a complex rotation of the Hamiltonian
H . Both bases lead to an accurate description of the
ground state of helium as well as many singly and doubly
excited states. It is not the purpose of this contribution to
analyse further the adequacy of both bases in the present
context. This has already been discussed elsewhere [14].
In fact, it turns out that these bases are very efficient in
many situations in atomic and molecular physics, see for
instance [19–23] for a more detailed discussion.

2.2 Time-dependent calculations

We now consider the interaction between the atom and
the laser field. Within the dipole approximation, the time-
dependent Schrödinger equation to be solved is given in
the velocity gauge, by:

i
∂

∂t
Ψv(r1, r2, t) =


H +

∑
i=1,2

A(t) · pi


Ψv(r1, r2, t). (5)

The vector potential, polarized along the z-axis, is defined
in the interval [−T/2, T/2] as:

A(t) = A0

(
cos

π

T
t
)2

cos(ωt)ez, (6)

where T is the total pulse duration and ω the photon
energy. Similarly, in the length gauge, the time-dependent
Schrödinger equation reads:

i
∂

∂t
Ψl(r1, r2, t) =


H +

∑
i=1,2

E(t) · ri


Ψl(r1, r2, t), (7)

with the electric field defined as:

E(t) = − ∂

∂t
A(t). (8)

The total time-dependent wavefunction is expanded in the
basis of the field-free atomic eigenstates (see Eqs. (1–3)),
normalized to unity:

Ψv,l(r1, r2, t) =
∑
α,L

Cv,l
α,L(t)ΨL,M

α (r1, r2). (9)

Both equation (5) and equation (7) are integrated over
the total pulse duration T . This integration is carried out
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within the interaction picture with a usual Runge-Kutta
type formula. Note that by working in the interaction pic-
ture, we eliminate all the oscillations of the total wave-
function that are driven by its field-free evolution. The
initial condition is given by:

Ψl(r1, r2, t = −T/2) = Ψv(r1, r2, t = −T/2)

= ΨL=0,M=0
in (r1, r2), (10)

where ΨL=0,M=0
in (r1, r2) is the initial state of the field-free

system i.e. the ground state of helium in the present case.
In the following it is assumed that M = 0.

At the end of the pulse, the population of a given sta-
tionary state Ψα is obtained by projecting this state on
the total wavefunction. Our finite basis however describes
the continuum states over finite distances. It is therefore
very difficult to separate single and double ionization con-
tributions from the final wavefunction. In addition to the
fact that the two-electron single and double continuum
states may be degenerate in energy, the numerically built
positive energy states contain necessarily both single and
double continuum components since our finite basis does
not allow to describe either the single or the double contin-
uum wavefunction in the asymptotic region. In the present
case, the energy distribution of the two ejected electrons is
obtained by projecting the final state wavefunction (in the
length or the velocity gauge) on an uncorrelated product
of two Coulomb wavefunctions Ψc,p:

∂2PDI

∂ε1∂ε2
= ρ(ε1)ρ(ε2)

∫
dΩ1

∫
dΩ2

× |〈Ψc,p1Ψc,p2 |Ψv,l(t = T/2)〉|2 , (11)

where ρ(ε) is the density of states in the continuum. Whe-
ther or not the above expression is a good approximation
is still an open question. The results which will be pre-
sented in the following indicate however that correlation
in the final state do not play a crucial role. On the other
hand, the implementation of a new algorithm taking into
account the electron correlation (at all orders) in the final
state is under way. In the case of B-splines, it is possible
to built up a double continuum wavefunction following a
method described by Nikolopoulos et al. [24]. In the case
of the Coulomb Sturmian functions, we use the J-matrix
method [25,26] to generate an accurate single continuum
wavefunction. The double continuum component of the
final wavefunction (after the elimination of the negative
total energy component) is then obtained by substract-
ing from this function, its projection on the accurate sin-
gle continua. Switching to momentum space allows to ex-
tract the energy distribution of the ejected electrons. The
one-electron energy spectrum in the double continuum is
obtained by integrating expression (11) over one of the
electron energies. An additional integration over the en-
ergy of this electron provides the total double ionization
probability PDI.

All the results presented here have been obtained by
means of two bases (a B-spline and a Sturmian basis). In
our B-spline basis, the number of B-splines per electron

Table 1. Angular terms for the B-spline basis.

Angular (λ, l) angular Number of
momentum L pairs combination terms
L = 0 (0, 0) (1, 1) (2, 2) (3, 3) 5100
L = 1 (0, 1) (1, 2) 5000
L = 2 (0, 2) (1, 1) (1, 3) 6275
L = 3 (0, 3) (1, 2) 5000

Table 2. Angular terms for the Sturmian basis.

Angular (λ, l) angular Number of
momentum L pairs combination terms
L = 0 (0, 0) (1, 1) (2, 2) (3, 3) 5100
L = 1 (0, 1) (1, 2) (2, 3) 7500
L = 2 (0, 2) (1, 1) (1, 3) (2, 2) 7095

angular momentum Nb = 50. This means that 2500 com-
bination terms are used for each pair of electron angular
momenta (λ, l) when λ 6= l and 1275 when λ = l. The box
radius Rmax = 50 a.u. and the order k of the B-splines is
equal to 7. A linear knot sequence is used. The angular
terms ((λ, l) pairs) used in the calculations are given in
Table 1. In the case of the Sturmian basis, we also use
50 Sturmian functions per (λ, l) pair except for the (2, 2)
pair (L = 2) where only 40 functions were included. In
Table 2, we give the angular terms that have been used in
the calculations. The non-linear parameter k is equal to 2
for L = 0, 1 for L = 1 and 0.7 for L = 2. The fact that the
number of total angular momenta is limited to 2 or 3 is
justified because the laser intensities considered here are
relatively low (of the order of 1014 watt/cm2) well within
the validity of the lowest order of perturbation theory.
The number of pairs of electron angular momenta (λ, l)
per L is also limited. The inclusion of further pairs in-
creases significantly the size of each L block of the atomic
Hamiltonian matrix making the diagonalization problem
almost computationnally untractable. However, this is not
crucial in the present case because the atomic process
that is analyzed here is dominated by interaction channels
where correlation do not play any role. This means that
the pairs (0, 0), (1, 1) and (0, 2) are the dominant ones
in the final states. This point has been checked carefully
by considering the contribution to the final cross-section
of each individual pair separately. We have also checked
that our results are gauge independent in both bases. It is
important to note that although the time propagation is
performed within the interaction picture, the calculation
of the observables at the end of the pulse is carried out
within the Schrödinger picture. In principle the results do
not depend on the picture in which the total wavefunction
is expressed. In practice however, the basis is truncated;
this leads in some cases to significant differences (up to
50%) between the results obtained in both pictures. Our
method has been tested for one-photon double ionization.
We reproduce with a good accuracy the one-photon dou-
ble ionization rates obtained by Shakeshaft et al. [27,28].
The difference with our data is of the order of 5%.
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Fig. 1. Generalized cross-section for two-photon double ion-
ization of the ground state of helium. The present results
(open and full circle) have been obtained by solving the TDSE
using B-splines (open circle) and Sturmian functions (full
circle). These results are compared to those of Colgan and
Pindzola [29] and Feng and van der Hart [30]. The position of
the double ionization threshold is also indicated.

3 Two-photon double-ionization

3.1 Generalized cross-section

For photon energies below 2.2 a.u. (≈ 60 eV) i.e. outside
the regime of the autoionizing resonances, it is meaning-
ful to define the two-photon double ionization generalized
cross-section σ(2γ, 2e). By assuming that the adiabatic
approximation is valid and that the pulse shape is given
by equation (6), σ(2γ, 2e) expressed in cm4s, is given by:

σ(2γ, 2e) = 2.268× 10−23 × ω3 × PDI

I2
0 × T

, (12)

where ω is in eV, and the peak intensity I0 in watt/cm2.
The total duration T is expressed in number of optical cy-
cles. Since the generalized cross-section is actually defined
within the lowest order of perturbation theory, we use a
sufficiently low peak intensity I0 = 1014 watt/cm2. In the
present case, the total duration of the pulse T = 10 optical
cycles. Our results obtained with both bases (as described
in the previous section) are presented in Figure 1. They are
compared to the results obtained by Colgan and Pindzola
[29] and Feng and van der Hart [30]. Colgan and Pindzola
use a time-dependent approach similar to our method but
in which the total wavefunction is built up on a grid.
Feng and van der Hart use a R-matrix formalism taking
into account the electron-electron correlation in the final
state. We are not showing here the results obtained within
the lowest order of perturbation theory [31,32] which are
5 times higher than the results presented here. As a matter
of fact, there is no clear consensus so far regarding which
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Fig. 2. Schematic diagram of the levels involved in the two-
photon double electron ejection.

are the most accurate calculations. However, we note the
striking agreement between the results obtained with each
of our two bases [33] and the fact that our data are very
close to those of Feng and van der Hart. This last point
seems to indicate that at least in this case, the inclusion
of electron-electron correlation in the double continuum is
not crucial.

3.2 One-electron energy spectrum

Let us now study in detail the one-electron energy spec-
trum. As shown in a previous work [13], (2γ, 2e) pro-
cesses are dominated by transition channels that do not
require any electron-electron correlation. At this stage,
it is convenient to consider two frequency regimes. For
frequencies larger than 2 a.u., the process is sequential
and proceeds as shown in Figure 2: after the absorp-
tion of one photon and the emission of the first electron,
the system is in the ground state of He+. It then ab-
sorbs another photon which ejects the second electron.
We have found that the probability for the system to
reach the double continuum through any channel involv-
ing an excited state of He+ is negligible. This means that
if the photon frequency is less than 2 a.u., the process
is direct. For ω > 2 a.u., the one-electron energy spec-
trum exhibits two peaks, one at E1 = EHe+(1s) + ω and
the second one at E2 = EHe(11S) + ω − EHe+(1s) (see
Fig. 2). The distance between these two peaks is given by:
Ec = E2 − E1 = EHe(11S) − 2EHe+(1s) = EHe(11S) − E1s2 .
Ec is actually the ground state correlation energy defined
here as the difference between the “exact” ground state en-
ergy EHe(11S) = −2.9037 a.u. and the ground state energy
E1s2 = −4 a.u. obtained within the independent model.
If both electrons were completely independent, the one-
electron energy spectrum would exhibit only one peak at
an energy of ω − 2 in a.u. In the present case, the cor-
relation energy is 1.1 a.u. corresponding to a correlation
time τc = 1/Ec = 0.9 a.u. or 21.8 attoseconds (as). In the
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Fig. 3. One-electron energy spectrum resulting from the dou-
ble ionization of He(11S) with an ultrashort pulse whose peak
intensity I0 = 1014 watt/cm2 and ω = 2 a.u. Two pulse dura-
tions are considered: 10 optical cycles (≈760 as) and 18 optical
cycles (≈1370 as). For clarity, the data corresponding to the
full line have been multiplied by a factor 5.

following, we study how the one-electron energy spectrum
modifies for ultrashort pulses.

In Figure 3, we show the one-electron energy spec-
trum for a frequency ω = 2 a.u. and a peak intensity
I0 = 1014 watt/cm2. Two pulse durations are consid-
ered: 10 optical cycles (≈760 as) and 18 optical cycles
(≈1370 as). The results shown here have been obtained by
using a Sturmian basis. Similar data have been produced
with the B-spline basis. We first note that ω = 2 a.u. is
actually the threshold frequency for the sequential pro-
cess to occur. It is the reason why the position of the low
energy peak is not clearly defined. For decreasing pulse du-
rations, the peaks broaden as expected and start to move.
We clearly see that the high energy peak is shifted to-
wards lower energies by about 0.15 a.u. or 4.1 eV. Note
that the width of the peaks stays much smaller than the
correlation energy. We show in Figure 4 the position in eV
of the high energy peak as a function of half the duration
of the pulse for the same frequency and peak intensity.
When the full pulse duration decreases from 18 to 6 a.u.,
the high energy peak moves from 27.5 eV to 19 eV. This
significant shift is interpreted as follows.

For very short pulses (of the order of the correlation
time τc), the first electron ejection occurs necessarily over
an extremely short time leaving the other electron in a
non-stationary state i.e. a superposition of many states
of He+. In presence of the field, this non-stationary state
can relax towards the ground state of He+ unless the in-
teraction time with the pulse is shorter than the relax-
ation time. If this is the case, it becomes meaningless to
distinguish between the direct and the sequential process.
Since the intermediate state is non-stationary, its energy
is not defined. Its averaged energy however will be higher

1 2 3 4 5 6 7 8 9 

20 

25 

30 

Number of optical cycles at half maximum

E
ne

rg
y 

(e
V

)

: B−spline − TDSE

: Sturmian − TDSE

Fig. 4. Position of the most energetic peak as a function of
half the duration of the pulse in optical cycle for the same
case as in Figure 3. The results obtained with both bases are
compared and the position of the most energetic peak in the
limit of long pulses (dashed line) is also indicated.

than EHe+(1s); this explains why both peaks are moving
towards each other. This effect takes place already for
pulse durations much longer than the correlation time τc.
This results from the fact that double ionization occurs
only in a very small time interval around the maximum
of the pulse. In the present case and for a pulse duration
of 18 optical cycles, we found that the total double ion-
ization probability is 24 × 10−6. Note that perturbation
theory is clearly valid in the present conditions.

In the following we consider two other frequencies:
one lower than 2 a.u. where the (2γ, 2e) process is di-
rect and another one larger than 2 a.u. where doubly
excited states of helium might play a role as intermedi-
ate states. In Figure 5, we show the energy distribution
of both electrons for a frequency ω = 1.65 a.u., a peak
intensity I0 = 1014 watt/cm2 and a pulse duration of
10 optical cycles. The calculations have been performed
with a Sturmian basis. We clearly see that the distri-
bution is rather flat by contrast to a sequential process
which according to the previous discussion is character-
ized by two sharp peaks at positions symmetric with
respect to the straight line E1 = E2. When the fre-
quency is such that doubly excited states could play a
role as intermediate states, it is legitimate to ask whether
or not the (2γ, 2e) process is still dominated by tran-
sition channels that require no electron-electron correla-
tion. Note that for helium and for subfemtosecond pulses,
most of the doubly excited states can be considered as
bound states. In order to answer to the above question,
we consider ω = 2.34 a.u. With this frequency and a long
pulse duration, the first photon absorption would drive the
atom almost on resonance with the third doubly excited
P-state above the first single ionization threshold. We
show in Figure 6 the one-electron energy spectrum for
a peak intensity I0 = 5 × 1014 watt/cm2 and two
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Fig. 6. One-electron energy spectrum resulting from the dou-
ble ionization of He(11S) with an ultrashort pulse whose peak
intensity I0 = 5× 1014 watt/cm2 and ω = 2.34 a.u. Two pulse
durations are considered: 10 optical cycles (≈650 as) and 18 op-
tical cycles (≈1170 as). For clarity, the data corresponding to
the full line have been multiplied by a factor 3.

pulse durations: 10 optical cycles (650 as) and 18 optical
cycles (1170 as). The data have been obtained with a
Sturmian basis. We have checked that the B-spline ba-
sis produces similar data. The one-electron energy spec-
trum exhibits two well defined peaks around E1 = 0.3 a.u.
and E2 = 1.35 a.u. for the 18 optical cycle pulse. These
peak positions are precisely those expected on the basis of
the above discussion regarding the sequential process. Fur-
thermore, we see that the peaks move towards each other
when the pulse duration is decreased. Therefore, it is clear
in agreement with previous results [15] that in these con-

ditions of frequency, the (2γ, 2e) process is still essentially
sequential and that the electron-electron correlations do
not play any role.

4 Conclusion

We have studied the two-photon double ionization of He in
its ground state by attosecond pulses and focused our at-
tention on the one-electron energy spectrum. For frequen-
cies equal or larger than 2 a.u., the ionization process is
sequential and the one-electron energy spectrum exhibits
two well defined peaks spaced by the electron correlation
energy in the ground state of He. For ultrashort pulse du-
rations in the subfemtosecond regime, we showed that the
peaks move towards each other for decreasing pulse dura-
tions; the distance between the peaks is directly related to
the relaxation time of the second electron orbital after the
ejection of the first one. All the results presented in this
contribution have been obtained by solving numerically
the time-dependent Schrödinger equation.

Taking into account the constant progress regarding
the production and characterization of attosecond pulses,
we hope that an experiment will be performed soon. In
this experiment, both the ion and one of the electrons
must be detected in coincidence.

We are very grateful to Hugo van der Hart for providing us
with his generalized cross-section data before publication. J.B.
thanks the “Fonds National de la Recherche Scientifique de
la Communauté Française de Belgique” for his one-year post
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thank Gerard Lagmago Kamta who developped the major part
of the code that solves the time-dependent Schrödinger equa-
tion with a Sturmian basis.
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